The student will 1

explain how molecular movement causes the
pressure exerted by a gas.

Derive and wse the relationship PV=1/3Nm<c?>
[where = c?> jis the mean-square speed (A simple
model considering one-dimensional collisions and
then extending to three dimensions using
1/ 3=cP>m=eg, > is sufficient)].

Calculate the root-meoan-sguare specd of an ideal
gas.

Derlve and wuse the formula for the average
transiational kinetic energy of a gas.

Niustrate that the model of ideal gasses is used a
base from which the field of statistical mechanics

STATISTICAL MECHANICS AND
THERMODYNAMICS

' Student Learning Outcomes [(SLOs)

emerged [and has helped explain the behavior of
‘non-ideal’ gasses through modifications o the
model e.g. the behavior of stars).

State that under extreme physical conditions, atoms
can break down into sub-atomic particles that can
form unusucal states of matter [Such as degenerate
matter. Usually made of any one kind of subatomic
particle such as neutron degenerabe matter in
neutron. stars under strong gravity and heat) and
Bose-Einstein condensates (created when certain
materials are taken ta very low temperatures amd
then exhibit remarkable properties like
superconductivity and superfluldity)].



Statistical mechanics provides a foundnriun fr.br under!thndlng thermodynamic properties like
energy, entropy, and ternpef.ur_ute Ery using t;he p’dncip-‘les of thermodynamics.

Statistical mechanics is glx.blw.n:h ‘af physics that applies statistical methods to understand the
behavior of physical q’ys;i:i_e'-i'ﬁs composed of a large number of particles. It offers a framework for
understanding the behavior of complex systems, from the microscopic to the macroscopic level.
In the present chapter, we shall relate volume, pressure, and temperature to the microscopic
properties like speed and kinetic energy of gas molecules. Statistical mechanics is applied to
various complex systems, from materials science to biological systems.

16.1 PRESSURE EXERTED BY GAS MOLECULES

The molecules of a gas are in a state of continuous random motion in a container. They collide
with one another and also with the walls of the container. Due to collisions of gas molecules
with the walls, their momentum changes. Due to their elastic collisions, they transfer an equal
amount of momentum to the walls of the container. According to Newton's second law of
motion, the rate of transfer of momentum (Ap/At) by the gas molecules to the walls is equal
to the force (F) exerted on the wall. This force exerted by the gas molecules per unit area (A)
of the walls is equal to the pressure exerted by the gas.
_F _(ap)1 ) o
P A [z.?]'a o N [

Hence, the pressure that the gas Exerlfs an| H‘m box’ |\ ol
depends upon the number of mmeculas “that hit Face-2
each side of the box in one im;:mq and the force
with which a mleqmq qumdes with the wall.

Let us consider an ideal gas consisting of N number
of identical molecules in a rapid, random motion
contained in a cubic box of side |, as shown in Fig.
16.1. The gas molecules are moving with velocity Figure 16.1: Collision of gas molecules
{v) collide with the walls of the container and exert with the wall of container.

force on it. The force exerted per unit area of the

wall is the pressure of the gas.

Consider a single gas molecule of mass “m"™ moving towards face-1 of the container with the x-
component of its velocity v,,. 5o, initial momentum of the molecule along the x-direction is

mv_,. At face-1 of the container, the molecule has perfectly elastic collision and bounces back,

(its momentum is reversed). 5o, after the collision final momentum in the negative x-direction
is —mv,_,. Therefore, change in momentum of a gas molecule along the x-direction is:

ap = —mv,, —(mv,_,) . .
Ap = —-2Zmv,_, (16.1) —\."'""‘\":-‘l.'! @)\

According to the law of conservation nf mumentuﬁi, the momentum imparted to the wall by
the molecule will be Z2mv_, 'S =ik 109 '
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After colliding with face-1 of the container, ,l:he mulecule travels to opposite face-2 and collide
with it, rebounds, and travels back to face-1. So, the gas molecule cover distance ‘21" before
it again collides with face-1. The t.‘irne At taken by gas molecule to covers this distance *21" is
given by:

At = ;ﬁ-u '_ (16.2)

So, the rate of change of momentum of a gas molecule along x-axis is:
Ap _ —2mv,, —mvi,

= 16.3

T i (36833

v!.'l
As the rate of change of momentum is equal to force. Therefore, force exerted by wall of

cubical container on gas molecule is llvﬂ According to Newton's third law of motion, the

force exerted by the gas molecule on wall of cubical container is equal in magnitude but
opposite in direction to the force exerted by wall on gas molecule. Force F_, exerted by gas
molecule on the wall of cubical container is given by

—mvi, mvi, _
) -[ t J- L K=y _'
Similarly, forces exerted by all uther n‘nulecule.s along xl-a:;is amﬂ |02

F

=1

L m\r' LREEY,
o 6, - 2ok, (gl IE)

Total force exerted F, due to all. nwl;eculu alung x-axis is
F, =F, +F ...+‘F;, -li----'-+|"',....

|
E= mvi/ Jmvy mve, _‘_mv:N
or * L L L T L

Fo= TV Vi sVhea sV
Multiplying and dividing R.H.5 by N number of gas molecules.

- _mH(V:#V:z*v:,-h...fv'fE] (16.4)
| N B _
L] z +v2 +.u.l "'--.-.-"'Vi
Where ‘mMN® is total mass of N gas molecules. Putting [ Ll ] ;: = | = ¢{v?) in Eq.

(16.4), we get:
E, -"‘_”<v=} (16.5)
where {V.) is the mean square velocity of all the gas molecules traveling along the x-direction.

The mean square velocity{v?)of the gas molecule is equal to the suu."n of the mean square
velocities of the x, ¥, and z-components t::urlr velocities. - I |
vy =(vi) +{v2}+<v2> L (16.:8) | SR\RASR)
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Due to the random motion of a Ial.ﬁe ﬁUn:hl:iér of g.m.
molecules in the container, the components of the mean
square velocities of the gas mnlecules are the same along
three axes, i.e., {Va) = {\f‘}# {v?) . So, Eq. (16.6) becomes
as:

(v = {v’>+<V’>+<v) or (Vv =3(v)

2, _ (v
or vy =3 — 1e.7)
Putting value of {vi} from Eq. (16.7) in Eq. (16.5), we get:
mM (v®)
FLo=——2—x
e | 3

As the force per unit area in unit time on all faces of a
cubical container is equal, therefore generalizing the above
equation, we get:

mi (v}

F= i
1 3 (16.8)

Also, according to Pascal's law, the pressure of gas is
equally transmitted on all faces of a cubical container. Since
pressure is the force per unit area, therefore,
FDI'CE
P= -
Area L* : a% ?} f \
Putting value of F from Eq. {‘Hb,&} ln Eq {1&.9‘!, we u!t

miM {v'}
i 7 |_ l{gur(‘f

or = _li_"'a_
As P=v (Volume of the gas), so above equation becomes:

P= m—”{v‘) —_{16.10)

v
This is the expression for the pressures of ideal gas.

Pressure is affected by volume.
As the volume of the container
decreases molecules contained
within a smaller volume. As a

result, the particle collisions
occur more frequently with the
sides of the container, exerting a
higher pressure.

When the wvolume of the
container fincreases, there is
more space, so less freguent

collisions_with the walls of the
-cmtlﬁwr!
-~ pressure.

\exerting a lower

Pressure in terms of Average Translational Kin-tﬁ: Energy of Gas

Molecules

To find the relation between pressure of gas and average translational kinetic energy of gas
molecules, we multiply and divide the right-hand side of Eq. {(16.10) by Z, i.e.,

2N,1
=3vamv (16.11)

putttng—ﬂ = N‘ {(number of molecules per unit vutume}, wq,- gpt

_z

._..-._: ":i‘ﬁ?ﬁ. | 'F -E-N-{'z"mvt}_ o
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As, ;N_ is constant, so;

P = constant {zmv"} LU o P c-:{:;-mv’)
or P o (KED) ' LFLE DA - e
Thrs relation shows that:
The pressure exerted by the gas molecules on the walls of container is dﬂucl;ly prnpor:inml. ;p
the average translational kinetic energy of the gas molecules.

Pressure in terms of Density

From Eq. (16.10) we can derive another formula for the pressure of gas in terms of density and
mean sguare velncity of gas molecules.

P oE
TAME

miM
As, — = p, 50;
v P

P= —p{v‘} — (16.12)

This is another expressinn for the pressures of gas in terms of dmlty of thq gas.

Temperature in terms of Average Trnnslntiunal Kineﬂc Energy of Gas
Molecules Poaraat e\l |
According to ideal gas law: A\ N Y T

PV =n RT 16.153} 1 iy M _
Where ‘n’ is the number o rnolés of the gas, *V’ is the volume, ‘T’ is the absolute temperature
and ‘R = 8.314 J mol"'K """ is the universal gas constant. As, the number of moles ‘n’ can be
expressed as:
—. ;R
HA
Where N, = 6.022 x10** (molecules or atoms per mole) is the Avogadro number. 5o, Eq. (16.13)

becomes as:
R
= — T
PV N(NAJ

Here i = k iz Boltzmann constant and its value is 1.38 = 102 JK'. Hence;

- + - - 4 ey
PMENKT e (16:14) R 2R . FAETEN

As, Eqgq. (16.11) can be written as:
ZN .1 R 2 N TS
pve Mmool G el GO RS

Comparing the Egs. (16.14) and [1&."15;. wegf:i:l ALY

'Nlllnn_tbinnh rnunditlnn z .-{\f = 11 '5'.5' S «r
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MKT= %{1&1? b

{(16.16)

; Zo s
or T ¢..ﬁi_~i~m\' b
As ..3%:- constant, so Eg. (16.16) can be written as:

T = constant {%mv’} -

or T e {—mv‘} or T ec (KE)

The absolute temperature of an ideal gas is directly prup-urttonal to the average translational
kinetic energy of the gas molecules.

Example 16.1: The density of the air is p = 1,296 kg m* at temperature 0 °C.The root mean
square velocity of air molecules is 484 m s'. Determine the pressure of air.

Given: Density = p=1.29kgm?* v, . =484 ms" T=0°C=273K
To Find: Pressure=P =7
Solution: By using, P= —P"'r.m.i

Putting values, we get: P= E =1 ..2916 x.{nliﬂdl]t ==“I -012 x 10’ Pa

Aﬂ‘linment 16 1

Calculate the nverng- trms.luﬂnmt kinetic energy of a gas molecule at a temperature
320 K. . I':E (ol

16.2 ROOT MEAN SQUARE SPEED OF AN IDEAL GAS

According to the kinetic theory of gases, every molecule moves at a different velocity. If vy, vz,

Vi, .., ¥u are the speeds of N gas maolecules, then the mean square speed (vz}can be

determined by adding the square of the speeds of all the molecules and dividing it by the total
number of gas molecules.

(vy=YitVitVi+...+v} __For Your intormation |
N value of Boltzmann constant
Taking the square root of both sides, we get: per molecule in different units
Aare:
(v,}=JV:+\I‘:+v: +-.---I-Vi k=138=10"" erg &'
v N kw=138<l0P K
Putting ,f(vl = ¥, m, 0N the left side of above equation, k=33=x10"cal K™
we get root mean sguare speed : - !
z 2 v’ T R |
VAV VT e
v :J T L5 (16.17)
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The square root of the mean square sp-eed ctf thelI gas rrl.oh:cu'les is called the root mean square
{(rms) speed of the molecules. !

Average speed: It is deﬂned as the aﬂﬂ'lmetic mean of the speeds of the molecules of a gas
at a given temperature. [ _' ]

v‘,+ v, +v +eaeak Vy,
e M
In order to derive another expression for the root mean square speed of gas molecules, let us
start from the Eq. (16.10) of the pressure of gas.

= I PN
Pes V9

v (16.18)

or PV*—-T{V): — (16.19)

As we know that: PVv=NkKT (16.20)
Comparing Eqs. (16.19) and (16.20), we get:

vy = NKT

(V') = -3"_':_'—1- — (16.21) _
Taking a square root on both sides, we get: o~ 2N @I\
= ——a a2\
~ W ' el ',
Here J{v’} =v,,.- From Eq. {16--?;},; we can also write as:
rm:mﬁ LA =

Thus, the root mean sctuﬁre tpeed of the given gas molecule is directly proportional to the
square root of the absolute temperature of the gas molecules.

Putting k= ,:' in Eq. {16.22), we get:

A

v | 3RT
ram.s S m‘NA
Putting mM.=M (molar mass of the gas), we get:
’1'“’__ '
Veas = of =0 — (M6.23)

1
At constant temperature; Vv, ., <

Thus, at constant temperature, the root mean square speed of the gas molecules is inversely
ional to the square root of the molar mass of the gas. A gas of smaller molar mass has
comparatively high speed as compared to a gas of greater molar mass. Therefore, the root
mean square speed of hydrogen molecules is four times greatef than :hm-. of .oxygen molecules
at the same temperature. ' SN [ -

Also, from the Eq. (16.12), the pressure nfna-.r. 'is F = *p{\f }
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Taking a square root on both sﬁ:hﬁ df—the above equation:

.r-l‘}g—* \FFT

Putting J{\F) = V¥, ms ON the left side of the above equation:

3P
Vims = ? —_(16.24)

From Eqs. (16.22), (16.23) and (16.24) we get:
J.'il-tT JRT 3P

— 1‘
P — (16.25)

Example 16,.2:
Calculate the root mean square speed of oxygen molecules in the air at standard
temperature and pressure.
Given: At 5T.P., we have:

Temperature = T=0° =273 K Pressure = P = 1.04 x‘lﬂ’v" Pa
To Find: Root mean square speed of oxygen molecules =V Hw"“ 2 L
Solution: To find mass m, of one rrmlacyle Df Qﬂ'ﬂﬂﬁ w& l.mp the formula
Molecular mass of oxygcn RVl

me Lon ) = == For o n=M=32g)
Avogadro's nusiber | || || {0 N, (Fow amipe
RIS
Thus, m= %mrﬂ 31510 kg
ﬁ.ﬂz%i‘rq
d 3kT
MNow for root mean square speed, we use V,_ _ . = e

= 461.4 ms™’

3x1.38x10 =273
Putting values, we get: Yema =

5.31x107*

Example 16.3:

Four molecules of a gas have speedsof Zkms', 4 kms', 6 km s, and 8 km s, respectively,
Calculate their average speed and root mean square speed.

Given: V,=2 km s’ V=4 kms’ Vy=6kms" V,=8kms"
To Find: VvV, =17 Yema=™ 1
V,+V, VY, +V,

N

2+4+&+B—51‘Hﬁf‘-.‘.

e 4[>
For root mean square speed, we use the fcrmm.ar- WY [ (2o

Solution: For average speed, we use the formula: V,, =

Putting values, we get: v
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Assignment 16.2
Calculate the root mean square speed of nitrogen gas molecules in air under standard
conditions of pressure and temperature.

16.3 MODIFICATION OF THE IDEAL GAS MODEL TO DISCUSS
BEHAVIOUR OF NON-IDEAL GASES

Behaviour of Ideal Gases

As we know that in the ideal gas model, the size of gas molecules is negligible, there are no
interactions between them, and the collisions between each other and with the walls of the
container are perfectly elastic.

Gas that obeys the ideal gas law (PV = n RT) is called an ideal gas. The ideal gas law governs
macroscopic properties, e.g€., temperature, pressure, vnlume; qunntit;w q;f gas, and entropy.
Although there is no such thing in nature as a truly-ideal gas, gases can approach the ideal state
at low pressure and high temperatures. We hmfa mﬂ.-en tha.t the temperature of an ideal gas can

'l..r' .m.ll

be determined as T = —i(\' Y- This equnwn impﬁes that ternperature {a macroscopic property

of a gas) is defined by the mut,inn of m'\ mdi\ndual particle (a microscopic quantity). Hence,
different results for i qal: n‘a ‘provide connections between its microscopic and macroscopic
quantities. This gives ‘rise to a branch of physics called statistical mechanics.

Statistical mechanics is a branch of physics that connects the microscopic details of a system,
such as motion, energy, and the interaction of individual particles, with the macroscopic
observables we measure, such as temperature, pressure, volume, and entropy.

Statistical mechanics provides a mathematical foundation for thermodynamics, which is
otherwise a phenomenological theory.

Behaviour of Non-ldeal Gases

The ideal gas law works well for large volumes, high temperatures, and low pressure, but it
fails to explain the behavior of gases under high pressure, high density, and low temperature
(where molecules move slowly and interact with each other). It also fails when strong
gravitational forces act like those in stars. To account for these deviations from ideal behavior,
mudificatiuns were made to the ideal gas law.

Van Der Waals Equation

The ideal gas equation PV = n R T can be used l’nr real gasas at high temperatures as well as
low pressures at which intermolecular fartes are negligibly small. Van der Waals modified this
equation so that it can be used fnr_ real gases at wide ranges of temperature and pressure. Van
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der Waals assumed that the gas molecules are hard spherés.wﬁh"dcfﬁii’.e volume and that two
gas molecules somehow interact with each- m:har especiall.y at low temperatures when
molecules move slowly. He made the { allﬂwmg t:urr’&ciziﬂm '

(1) Volume Correction: The size of | gas “Velume = V Volume = vV - b Excuded volume=b
molecules is not negligible} .q:ut it-has a ® P ® _®

finite size, and some| part of the volume - o - L ®e* =

of gas is occupied by the gas molecules. . - - ®e ® o v-b

So, the space available for the motion of . o' ® e ° g -&

molecules of gas will be slightly less than L

the volume of gas 'V'. Roughly *b’' is the Meal Gas Real Gas

volume of one mole of gas molecules. Figure 16.2: lustration of volume correction.

Hence, effective volume becaomes (V — b), as shown in Fig. 16.2.

{i1) Pressure Correction: At low temperature, molecules interact somehow. Inside the
container, interaction between gas molecules cancel each other, but particles near the surface
and walls of the container have net inward force, as shown in Fig. 16.3. The effective pressure

of the real gas is calculated by [P + % ] Van der Waal's equation for 1 mdle of a gas is:

(P 3 %]{v —b)=RT (16.26) M? pull NiAsimoitey: Stiraiion
" I = L A AL Fi

Here ‘a’" and *b' are empirical constants, thﬁ.i-l‘_ valuesare,- :l I : - -'/- -
different for different gases. For ‘n’ moles of the gas - - ~
effective volume becomes (V -ni b’j and &Hectlve pressure

an® L - ®
becomes | P+ Vi I;Jjw.-réfﬁrh‘ Ilui"ander Waal s equation for

: Figure 16.3; lustration  of

‘n" mole of a gas 15' pressure correction.

[Pﬁ——\-‘r—- 11'\:' nb) =nRT {16.27)

This equation is designed to describe the behavior of real gases, but it can still be used for ideal
gases as well. Real gases or non-ideal gases approach ideal behavior at a high temperature and
low pressure. At high temperatures or at very low pressure, volume *V' is very large. So, the

terms '%‘ and ‘b’ can then be neglected. In this situation, Yan der Waals' equation reduces

to the ideal gas equation (P V = n RT).
16.4 Gravitational Effects on Ideal Gas Model

“In the ideal gas model (i.e., the ideal gas law) at the laboratory scale, gravity is much weaker
as compared to other factors such as the kinetic energy of the gas molecules and the pressure
of the gas. That's why, it makes sense to ignm‘e gravity far tdeal gas. But on a large scale, e.g.,
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in a star, gravity plays an important role in their stability.
Accounting for gravity requires much more complex models as
compared to the ideal gas nmdg-i tn understarpd the behaviour
of gas molecules.

In the core of stars, heat pmdur:ed by fusion, radiation
pressure, and de-geﬁ'teracy pressure by guantum effects,
generate net outward pressure that is counterbalanced by
gravity, a state known as hydrostatic equilibrium, as shown in
Fig. 16.4. This ensures stability in the stars,

Example16.4: Calculate the pressure exerted by one mole  Figure 16.4: Hydrostatic
of a gas at room temperature 300 K with fixed volume 0.022  equilibrium.
m?, using Van der Waals equation. Where a = 3.59 (liter)?
atm (mole)? and b = 0.0427 liter/mole.
Given: R = 0.0821 liter-atm-mol™ K"

Temperature = T = 300 K n =1 mol

Volume = V = 0.022 m® = 0.022x 1000 liter = 22 liter

{as 1 m? = 1000 liter)

ToFind: P=7?

Solution: By using Van der Waals equation: [ ](V nb] = nﬂf

P._ ART ! |
TWonb vl
'h-:D G&Zf:]ﬂﬂ 3.59 x{1)*
Putting values, we get: |t 1 1146 atm
A [N O 22 — (10.0427 (22)*

N I Assignment 16.3
{a) Using the Van der Waals equation, calculate the temperature of 20.0 moles of helium in
a 10.0 litre cylinder at 120 atmosphere pressure. Van der Waals constants for helium:
a = 0.0341 litre? atm mol?; b = 0.0237 litre mol™.
{b) Compare this value with the temperature calculated from the ideal gas equation.

16.5 BEHAVIOUR OF MATTER UNDER EXTREME PHYSICAL
CONDITIONS

In the universe, there are many cases in which matter has evolved in to extreme physical
conditions. Extreme physical conditions can alter the behavior of matter, leading to unique and
unusual states of matter such as degenerate matter and phenomena like Bose-Einstein
condensation, superconductivity states, superfluidity, and other quantum phenomena. These
conditions are observable at extremely high pressure or at extremely low pressure, by materials
of high density or by materials experiencing high grawtatmnai furr.:e. We will learn how these
conditions lead to unusual states of matter. i
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16.5.1 Degenerate Matter

Extremely high pressure can cause particles 1_:;:: inter.lact closely where gquantum mechanical
effects, particularly the Pauli Exclusion Principle become significant. The Pauli Exclusion
Principle states that:

Twio electrons cannot occupy the same quantum state.

Degenerate matter happens when gravity squeezes atoms so tightly under extremely high
pressure in a star that they change from their normal state.
Hormally, atoms are made up of a nucleus and electrons
revolving around the nucleus. But when the pressure is
extremely high, electrons are strongly pressed tightly against
the nucleus in high energy states (according to Pauli Exclusion
principle) and they cannot move freely. At this stage, electrons
show resistance against gravity and other forces for further
compression. This resistance is called degeneracy pressure,
which counteract the effect of gravity and other compressive
forces, as shown in Fig. 16.5. So, degenerated matter is matter
that is packed so tightly that its electrons are forced into a
tightly packed configuration.

Degenerate matter is typically formed in the cores of white. '_’"l'-."’:-'-"ﬁ-m Degeneracy
dwarf and neutron stars, where gravity campress the ' materlal._'- e
to incredibly high densities.

Gravitational pressure

— Dressurs - outward push of pressure
White Dwarfs \R\ -—-- gravity §
White dwarfs are formed due tg ||
remnants of lowr | [t
intermediate mass- stars. ‘When ' vward push
a star has used up all of its , of

nuclear fusion fuel, it removes

its outer layers and contracts to
form a white dwarf.

In  white dwarfs, the high
gravitational force is balanced
by electrons degenerate
pressure, which arises from the
Pauli Exclusion principle, as
shown in Fig. 16.6. Gravity pulls
material together while
electrons are forced into high-
energy states, and it forms an
equilibrium state.

Figure 16.6: High gravitational force is balanced by electrons
degenerate pressure.
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16.5.2 Neutron Stars

Meutron stars are formed from the
remnants of more massive stars._In neutron
stars, matter is further compressed by the
gravity, due to which electrons and protons
start to combine to form neutrons.
Therefore, neutrons degenerate pressure
arises due to the Pauli Exclusion Principle,
which balances gravity, preventing further
compression, as shown in Fig. ,16.7. This
stable state of matter is known as neutron
Stars.

Despite the fact, that a neutron star is only
about 20 km in diameter, it is about 1.5
times more massive than the sun. Neutron
stars have overall densities of the order of
10" kg m?. Newly formed neutron stars,
known as “hot neutron stars,” can have a surface temperature of a several million degrees
Celsius.

16.5.3 Bose-Einstein Condensation AR AR

Figure 16.7: Meutron star.

Bose-Einstein Condensation (BEC) is a state| '._ﬂf" 'mat'l:er'- that forms at extremely low

temperatures, such as close Lo absolute zero, causing
particles kinetic energies to decrease significantly. At this
low temperature, bosoms | (e.g-, photons, W bosons, Z
bosons, etc. } can condense in the same state known as Bose-
Einstein condensation. This is different from degenerate
matter, where two fermions, e.g., electrons, cannot exist
in the same state. The Bose-Einstein condensation state of
matter exhibits unique properties like superfluidity and

m For Your Information
he temperature inside a newly
formed neutron star is from
around 10" to 10" K. However,
the huge number of neutrinos it
emits carries away so much
energy that the temperature of
an isolated neutron star falls
within a few years to around 10%
K.

superconductivity.

16.5.4 Super Fluidity

A notable property of Bose-Einstein Condensation is superfluidity, where condensate shows zero
viscosity, allowing it to flow without resistance. Superfluidity is observed when certain fluids
are cooled to extremely low temperatures, close to absolute zero. This results in special
qualities, like a fluid's capacity to pass through incredibly small spaces at a steady speed
without the aid of outside forces.

It can also lead to remarkable behaviour, such as the ability to form persistent vortices. In fluid
dynamics, a vortex is a region in a fluid in which the flow revolves around an axis line, which

may be straight or curved.
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16.5.5 Super Conductivity

In certain conditions, ﬁpﬁEHE*HStEIH :undensatiun leads to superconductivity, where electrical
resistance drops to zero, allowing current to flow without resistance. This occurs when two
electrons form boson-like entities called cooper pairs, which can then occupy the same state
and move through the material without scatterineg.

Below the superconducting transition temperature, paired electrons form a condensate (a
macroscopically occupied single quantum state that flows without resistance).

Superconductivity is the property of certain materials to conduct current without energy loss
when they are cooled below. a critical temperature or transition temperature.

Superconductors are those substances whose resistivity become zero at very low specific
temperatures.

Critical temperature (T:): AP
The low temperature at which and below which the resistivity
p of substance become zero is called the critical temperature
or superconducting transition temperature, as shown in Fig
16.8. =[]

Superconductivity was first discovered ir_{ 19‘11 bsr Du:r.ch
physicist Heike Kamerlingh Onnes when hie. -nbserw:d ‘the g
sudden disappearance of e-iec'l;rh:ql rb{;istaﬁce in mercury at 0 - T
extremely low temperatures, 145,2 K)y. In 1988, some new Figure 16.8: Graph of
ceramic (thallium,. ;\c:ﬁ\u:iurﬁ ‘barium, coper and oxygen) resistivity against temperature.
showed super-conductivity even at critical temperatures of 125 K.

A lanthanum superhydride {(LaHw) compound at a pressure of

around 170 gigapascals is found to exhibit superconductivity | Substance T
with a critical temperature of 250 kelvin, the highest critical [Fre——ray 232K
temperature that has been confirmed so far in a | 7o) TIEK
superconducting material. Tin {Sn) 3.72K
Applications of superconductors: Lead (Ph) 7.2 K

Superconductors are used in powerful electromagnets
(32 Tesla), particle accelerators, magnetic levitation (Maglev) trains, small but powerful
electric motors, fast computer chips, and potentially more efficient power transmission lines.
Researchers continue to explore ways to achieve superconductivity at higher temperatures,
which would make it more practical for everyday use.

SUMMARY

< Pressure of gas: The pressure exerted by a gas mnleculr.- irs lmvmsure of the force exerted
by gas molecules per unit area as they cnulde wit.h the walls of their container.

< The pressure exerted by the gas ]_'l"lDll.-_El_EL_FlEﬁ_ _nn ‘the-walls of the container is directly
proportional to the average translational kirietic energy of the gas molecules.

MY Y|
T |50
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< The temperature of gas molecules is directly proportional to the average translational
kinetic energy of gas mlaq:ule-s 3

Mean kinetic energy of a i'ncw'fng gas molecule of an ideal gas is directly pruportinnal. to the
absclute temperature “T™.

Pauli Exclusion Principle states that “two electrons cannot occupy same quantum state™,
Bose-Einstein condensate (BEC) Predicted by Bose and Einstein in the 1920s, this is a unique
state of matter at extremely low temperatures, where a group of boson particles occupy
the same quantum state.

Degenerate matter: It's a state of matter where particles are so densely packed that
quantum mechanical effects dominate over classical mechanics. This typically occurs in
extremely high-pressure environments, such as the cores of massive stars like white dwarfs,

e @

S

neutron stars.
% White dwarfs are formed due to remnants of low to intermediate mass stars. When a star

has used up all of its fusion fuel, it removes its outer layers and contracts to form a white
dwarf.

< HNeutron stars are formed from the remnants of more massive stars. In neutron stars, matter
is further compressed by gravity. Due to this, electrons and pmtum start to combine to
form neutrons.

< Super fluidity: A notable property of Bose- Einstein Cprhdenutiun EEC is superﬂuicﬁty. where
condensate shows zero viscosity, allowing it l;n low, w'lthout resistance,

< Super conductivity: In certain conditions, Bose-Einstein Condensation BEC leads to super-
conductivity, where etectrlcial resistancc ‘drops to zero, allowing current to flow without

resistance. 1 :r'|

re

Formula SheeE"" N

= _2 1 i i g
P 3 (v P 3N¢.{2mv2} f o 3;:3(1? b 3k(2nnf b
PV = nRT PV=NkT e fﬁ+v§+i+-.-.+u§,

J3kr e = = ( ﬂﬂ: ]{V —nk)=nRT
~
EXERCISE '

Multiple Choice Questions

Encircle the Correct option. JJu
1) Which of the following is the correct relatlun between pressure 'P and density “p " of the

gas, at constant temperature? )

T [WN Y e . .
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A. Pl PR AU C.P=p D. P o p?
P NNE

2) Which of the fullmﬂﬂg 1s correct formula for the root mean square speed nf a molecule in
a gas at the absolute temperature T?

KT mk KT
A Yy, =1. 51)“1 B. Voo =155 €V, =1 ?3,’H D.V, . =1. 73".11

3) Which of the following motions of ideal gas molecules determines the temperature?

A. Translational motion B. Rotational motion
C. Vibrational motion D. All types of motion.
4) Which of the following gases possesses the maximum root mean square velocity at the same
temperature?
A. Dxygen B. Carbon dioxide C. Hydrogen D. Helium

5) Real gases deviate from ideal behavior because gas molecules:
A. are colorless B. are spherical
C. have intermolecular forces of attraction D. have high speeds
6) The root mean square speed of gas at 27 °C is Vr.m... If the temperature of the gas is raised
to 327 °C , then which of the following will be the root mean square speed of gas?
A. (1/VZ) vemas B. vrms - | CoVE Va0 D. ZVems
7) Which of the following is the ratio nf rmt’ rnnan Wuﬂ.ﬂ& speed of oxygen O; and hydrogen H;
at same temperature? VL :
A.1: 2 B ?.' [\ C. 1:4 D. 4:1
8) Density of a gas is 5 kgm'¥jat npressure of 6x10® Pa. Which of the following is the root mean
square velocity i the gas molecules?

A. 600ms' B. 400 m s’ C. 300ms” D. 180 ms"
9) The average kinetic energy of gas molecules is:
A. directly proportional to pressure of gas B. inversely proportional to volume of gas

C. inversely proportional to the absolute temperature of gas
D. directly proportional to the absolute temperature of gas
10) The pressure is exerted by the gas on the walls of the container because its molecules:
A. lose kinetic energy B. stick to the walls
C. on collision with the walls, there is a change in momentum of gas molecules
D. on collision with the walls, gas molecules exert no faorce on wall
11)The rms speed of the molecules of enclosed gas is vr.m.s. Which of the following will be the
rms speed of gas molecule, if pressure is doubled keeping the temperature same?

A. 1/2 Vemas B. Vrma C. 2 Vema D. 4vems
12)A neutron star has a super high .
A. density B. output of light C. input of neutrons D. output of x-rays
13)Which of the following is the electrical resistance uf the mpel'tﬂnduclur below critical
temperature? I =
A. Finite B. Large - _ -~ \lg.) Zf.-rn ; D. Infinity

14)What is the process by which-a Bus&Ein!tEin Cundensate is formed?
A. Fusion B: I':'tsslm W

C. Deéompasitiﬂn AP D. Coeoling iﬁo extremely low temperature
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Short Questions

1) Mention the diffemr,lt. ways of fm:reasing the number of molecular collisions per unit time
in a gas. [}

Z) By reducing the vnlume of a gas at a constant temperature, the pressure of the gas
increases. Explain it on the basis of kinetic theory.

3) What do you mean by the root mean square speed of the molecules of a gas? Is the root
mean square speed the same as the average speed?

4) Why is the temperature below absolute zero not possible?

5) Estimate the average kinetic energy of a helium atom at the temperature on the surface of
the sun (6000 K).

6) Show that the ratio of the root mean square speeds of molecules of two different gases at
a certain temperature is equal to the square root of the inverse ratio of their masses.

7) Differentiate between the formations of white dwarfs and neutron stars.

8) Why do the gases at low temperatures and high pressure show large deviations from ideal
behaviour?

9) What distinguishes degenerate matter from regular matter?

10) Show that the temperature of ideal gas is d1rectly per-OI |'.|cmal ;:n the w,average translational
kinetic energy of gas molecules.

11) What happens to the electrical nesrstnnceof a sl..Ipern:anduf:tnr when it is cooled below its
critical temperature? WA

12) What are some potential app{ic.attuns uf supercanductnrs in transportation?

13) Provide an exarrple uf a hi‘Fh t,errlperatune superconductor,

Comprehensive. Questiuns

1) What is the pressure of gas? How do gas molecules exert pressure on the walls of a container?

2) Derive an expression for the pressure of an ideal gas and show that pressure is directly
proportional to the average translational kinetic energy of gas molecules.

3) Describe the root mean square speed of the ideal gas molecule and drive its expressions.

4) Derive an expression for the average translational kinetic energy of the ideal gas molecule.

5) Describe the modification of the ideal gas model to discuss the behaviour of non-ideal gases
using the Wan der Waals equation.

6) Describe the behaviour of matter under extreme physical conditions. What is degenerate

matter, and how are white dwarf and neutron stars formed?
7) Discuss superfluidity and superconductivity on the basis of Bose-Einstein condensation.

Numerical Problems

1) The mass of a helium atom is 6.64x107% kg. Calculate the root mean square speed of helium
atom in a gas at a temperature of 15 °C. Ee LlgAns: 1.34x10° ms™")
2) At which temperature will the root mean square VElﬂcit}' nf thE axygen molecules become

equal to the escape velocity of the earth (11.2 km s')? (Mass of one molecule of oxygen is
5.3x10?* kg and Boltzmann constant k = 1.38%10%* J K'). (Ans: 1.6x10° K)

RN '
National Book Fnuml:_t;nn 16-Statistical Mechanics & Thermodynamics ]



3) The mass of a molecule uf'i gas 15 6.4 10-27 kg. Calculate the root mean square speed of
gas molecule and Iﬂnet.lt: qnergy per molecule at temperature 400 K.

I (Ans: 1.6x10° m s, B.3x10%" J)

4) At which temperature the root mean square speed of gas molecules becomes double than its
speed at 27 °C, (pressure of gas is kept constant)? {Ans: 927 °C)

5) Determine the root mean square speed of argon atoms at temperature 40 °C. The molar mass
of argon is 39.95 g mol™. {Ans: 442 m s')
&) Calculate the number of gas molecules in a cubic meter of gas at standard temperature and
pressure (STP). (Ans: 2_.68x10** molecules)

7) A vessel A contains hydrogen and another vessel B whose volume is twice of vessel A contains
same mass of oxygen at the same temperature. Find (i) the ratio of the root mean square speeds
of hydrogen and oxygen gases, (ii) the ratio of pressures of gases in vessels A and B. Molecular

mass of hydrogen and oxygen are Z and 32 respectively. (Ans: 4:1 and 32:1)
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